

Vacuum Technology

Introduction to concepts that should be understood before designing, constructing, modifying, 'assessing' or, perhaps even using a vacuum system

Michael McKeown

Outline

Gas-solid surface interactions* Basics of conductance & pumping Gas load and its many sources Outgassing & ways to reduce it Pump throughput & keeping it high Equating gas load & throughput Modeling performance with VacTran

With KTG defines VT Gas Load = total Outgassing – major source

References

Overview Adsorption-Desorption, Diffusion & Permeation

Arrival at Surface Reflection & Sticking

Departure from Surface Cosine Distribution

References

1. Modern Vacuum PracticeH	larris
2. Vacuum Technology	Roth
3. Foundations of Vacuum Science and Technol	ogy Lafferty
4. The Physical Basis of Ultrahigh Vacuum	Redhead
5. A User's Guide to Vacuum Technology	O'Hanlon
6. Vacuum Sealing Techniques	Roth
7. Handbook of Electron Tube and Vacuum Tech	hniques
	Rosebury

Adsorption

'Satisfying' surface's residual forces Initially molecules of any type adsorbed More polar molecules preferred

Reduced by higher temperature Increased by lower temperature *

SURFACE

Pump mech

Desorption – (outgassing)

Opposite of adsorption Molecule gains sufficient energy to overcome binding energy to peers or surface

Increased by higher temperature Reduced by lower temperature

SURFACE

main problem

Diffusion

Gas trapped in bulk interstices Concentration gradient near surface Stainless steel: atomic H and CO

Increased by higher temperature * Reduced by lower temperature

Permeation

Gases permeate through all materials Gas/Solid usually immeasurably slow*

Gas/Elastomer are measurable*

Permeation rate f (partial pressure) f (specific for gas & elastomer) f (temperature)^q

H2 > Pd & He > quartz H20,N2,O2 Viton, Buna

Molecules Arriving at Surface

- 1. Reflect back into gas phase with no energy exchange *
- 2. Reflect back into gas phase with energy exchange *
- 3. Trapped shallow minimum energy state:*

 Physisorption
 0 10 kcals/mole

 4. Trapped in deep minimum energy state:

 Chemisorption
 20 100 kcals/mole

 5. Chemically react:

 Heat of formation ~100 500 kcals/mole

Rare even for He T/C, Pirani Residence time defined by energy Contimuum

Reflection of Light

Specular Reflection (smooth surfaces)

Diffuse Reflection (rough surfaces)

QED Feynman Moelcules?

Reflection of Atoms/Molecules

L – dot RT Pt/RT He, circle hot Pt/RT He Pt 1300°C He 1800°C R – dot RT Pt/hot He, circle hot Pt/hot He

Reflection of Atoms/Molecules at Large Angles

°°

7962

90

Adsorption of Atoms/Molecules

Accommodation coeff Condensation coeff Sticking probability

- reflection with energy exchange
- adsorption into shallow minimum
- adsorption into deep minimum

Accommodation Coefficients of Atoms/Molecules

Gas	Substrate	Coefficient
He	Ni (298K)	0.385
H2	Ni (298K)	0.249
Ar	Ni (298K)	0.935
N2	Pt (?)	0.816

Condensation Coefficients of Atoms/Molecules

Gas	Substrate	Coefficient	
He	glass at 50°C	0.17	
H2		0.57	
N2		0.76	
02		0.82	
Ar		0.86	
	Kurt J. Lesk	Ker	

Gas-Surface Conclusions

Molecules hitting a surface: Do NOT reflect like light Stick (momentarily ▶ permanently) Desorb with cosine distribution

(Under vacuum: every solid surface desorbs gas)

Basic Pumping Concepts

Flow Regimes Conductance Pumping Speed Conductance plus Pumping Speed 'Effective' Pumping Speeds (EPS) Measuring EPS

Flow Regimes

mfp -- mean free path

Continuum Flow: molecules' mfp is small compared to characteristic dimensions of vacuum volume

Transitional Flow: molecules' mfp roughly equal to characteristic dimensions of vacuum volume

Molecular Flow: molecules' mfp is large compared to characteristic dimensions of vacuum volume

Flow regime (ie pressure) affects conductance

Conductance

Passive Components

Ability to transfer gas *volume* in unit *time*

Determined by shape, open area, length, gas, & pressure (Volumetric flow measured in: L/s, cfm, m³/hr, L/m)

Calculating Conductance

- Dushman's Table
- Transmission Probability
- VacTran®

			F _t - Conductance of tube (liters sec ⁻¹) for air at 25°C						
	a (cm)	Fo	L/a = 1	2	4	8	12	16	30
		<u> </u>	K = 0.672	0.514	0.359	0.232	0.172	0.137	0.080
	0.1	0.367	0.246	0.188	0.132	0.085	0.063	0.050	0.029
	0.2	1.466	0.986	0.753	0.527	0.340	0.252	0.200	0.117
	0.3	3.300	2.217	1.664	1.184	0.764	0.567	0.451	0.263
	0.4	5.866	3.943	3.013	2.106	1.358	1.008	0.802	0.468
	0.5	9.166	6.160	4.708	3.291	2.122	1.575	1.253	0.731
	0.6	13.200	8.872	6.779	4.739	3.057	2.269	1.805	1.052
	0.7	17.970	12.080	9.228	6.449	4.161	3.088	2.457	1.432
	8.0	23.470	15.770	12.050	8.424	5.436	4.033	3.208	1.871
	0.9	29.700	19.960	15.250	10.660	6.879	5.105	4.061	2.368
	1.0	36.660	24.640	18.830	13.160	8.492	6.302	5.013	2.922
	2.0	146.600	98.560	75.340	52.650	33.970	25.210	20.050	11.690
	3.0	330.000	221.700	166.400	118.400	76.420	56.710	45.110	26.300
	4.0	586.600	394.300	301.300	210.600	135.800	100.800	80.210	46.770
	5.0	916.600	616.000	470.800	329.100	212.200	157.500	125.300	73.100
	6.0	1320.000	887.200	677.900	473.900	305.700	226.900	180.500	105.200
	7.0	1797.000	1208.000	922.800	644.900	416.100	308.800	245.700	143.200
	8.0	2347.000	1577.000	1205.000	842.400	543.600	403.300	320.800	187.100
	9.0	2970.000	1996.000	1525.000	1066.000	687.900	510.500	406.100	236.800
	10.0	3666.000	2464.000	1883.000	1316.000	849.200	630.200	501.300	292.200
					C		50)		

Aperture, long ducts (1/L), short ducts

Conductance vs Pressure

Tubes (with no losses)

Conductance vs Pressure

Conductance vs Pressure

Tube vs Elbow (of equal 'length')

Conductance vs Pressure

Elbow vs Elbow (radius vs miter)

Pumping Speed *

Active Components (Pump/Trap)

Ability to transfer (remove) gas volume in unit time

Determined by gas, pump's mechanism, and pressure) (Volumetric flow measured in: L/s, cfm, m³/hr, L/m)

Manuf quotes max value Ult press

Pumping Speed vs Pressure

Combining Conductance with Pumping Speed

Units for both: volume / unit time

Combined as reciprocals 1/Conductance + 1/Pump Speed = 1/Effective Pump Speed

1/EPS = 1/PS + 1/C1 + 1/C2 + 1/C3


```
Effective Pumping Speed
```

500 L/s pump & infinite conductance $\frac{\text{'Infinite'}}{\text{Conductance}}$ $1/\text{EPS} = 1/500 + 1/\infty$ 1/EPS = 1/500EPS = 500 L/s

E


```
Effective Pumping Speed
```

500 L/s pump & 500 L/s conductance

1/EPS = 1/500 + 1/5001/EPS = 2/500EPS = 250 L/s


```
Effective Pumping Speed
```



```
Effective Pumping Speed
```


Effective Pumping Speed

Effective Pumping Speed

Effective Pumping Speed

Measuring EPS 1 (i)

 Measure chamber (base) pressure P1
 Inject known mass flow rate of gas
 Measure new (working) pressure P2
 Calculate pressure difference P2 – P1
 (Convert mass flow units as needed) Mass flow / Pressure Difference = EPS

Measuring EPS 1 (ii)

- 1. Base pressure P1
- 2. Mass flow (N₂)
- 3. Working pressure P2
- 4. P2 P1

5x10⁻⁷ Torr 10 sccm 5x10⁻⁵ Torr 4.95x10⁻⁵ Torr

 10 sccm (10/60) x (760/1000)
 1.27x10⁻¹ T.L/s

 EPS
 1.27x10⁻¹ T.L/s / 4.95x10⁻⁵ T

 EPS (N₂)
 1600 L/s

Pumping Concepts 20

Measuring EPS 2 (i)

1. Estimate chamber volumeV2. Inject unknown flow of gas73. Measure (working) pressureP14. Time pressure decay7At time = 0shut off gas flowAt time = t secmeasure pressureP2

 $EPS = V/t \times log_e (P1/P2)$

Pumping Concepts 21

Measuring EPS 2 (ii)

- 1. Chamber volume150 L
- 2. Inject unknown flow of gas
- 3. Working pressure

EPS

4. Time

4x10-4 Torr

- **15 sec**
- 5. Pressure (t = 15 s) 6x10⁻⁶ Torr
 - EPS V/t x log_e (P1/P2)
 - EPS $150/15 \times \ln(4 \times 10^{-4}/6 \times 10^{-6})$
 - **42 L/sec**

Molecular flow only

Pumping Concepts 22

Conductance & Pumping Speed Conclusions

High conductance Conductance is too high Conductance is too low

shorter/fatter is better (I wish!) serious (and expensive!)

The lowest conductance Pump's `quoted' PS wins means very little

Think: Effective Pumping Speed

Meaning & Units Sources of Gas Load

Gas Load

The total *mass* (quantity/amount) of gas entering the vacuum volume in a given time period

Mass flow measured in: T.L/s, Pa.m³/s, mbar.cc/s, atm.cc/s, sccm (pressure x volume / time)

Gas Load - Sources

Permeation Real leaks: from air / not from air Virtual leaks Backstreaming Diffusion Sublimation/Evaporation Injected gas* Outgassing

Gas Load – Permeation

Air / H₂O and o-rings Air / H₂O and plastic gas line tubing * H₂O and Teflon insulators * H₂O and plastic cooling lines (in chamber) * H₂ / He and glass/silica tubing H₂ / CO and high temp. metal tubes *

Permeation rates through o-rings depend on: gas, elastomer, elastomer compounding, partial pressure, temperature.

Reducing permeation? *

Ar from cyl to cham[×] Terawatt facility Flex lines Tritium thru SS Double with evac

Gas Load – Real Leaks (air)

Gaskets at flanges/joints Re-welds (in high carbon SS) At welds after baking/cleaning At welds in cryo conditions Blank flanges cut from bar Feedthroughs: braze faults/cracked ceramics porous deep drawn weld lips

Detecting leaks?

Gas Load – Real Leaks (not air)

Needle valves connected to gas source Leaking shut-off valves connected to gas source Leaking valve on shut-off mass flow controller Gas/water circulation lines inside chamber with cracked tube or leaking joint

Detecting (not air) leaks?

Gas Load – Virtual Leaks

Blind tapped holes / non-vented hardware Multi-strand wire with plastic insulation Flat surfaces clamped together Welds on air-side surfaces

Test for virtual leaks?

Gas Load – Backstreaming

Oil vapor: rotary vane & piston, diffusion, oil ejector Methane, argon: ion (and getter?) Hydrogen, helium, neon: turbo, cryo, molecular drag Water vapor: liquid ring, stream ejector

Check for backstreaming?

Gas Load – Diffusion

H ₂ & CO	stainless
H_2	titanium* / palladium
H ₂ O	glass
VOMs	plastics

Pumping H2 from Ti Bars

Gas Load – Sublimation/Evaporation

Metals to avoid Mercury, cadmium, zinc Cesium, rubidium, potassium, sodium Stainless steels (containing non-metals)

Non-Metals to avoid Phosphorus, arsenic Sulfur, selenium

Refer to VP charts

What is it? Units of measure What are the worst sources? Main components Reducing outgassing

Outgassing

Consider all gas phase and absorbed vapor molecules inside a vacuum chamber

Outgassing Rate is difference between number of molecules:

desorbing from the surface (in time 't') absorbing on the surface (in time 't')

Outgassing follows exponential decay

Outgassing Rate

Effective desorption rate from a given surface measured by rate-of-rise test (from a significantly large area)

- After preparation & cleaning in a repeatable way
- At a particular temperature
- After a specified time under vacuum (1 & 10 hours)
- From a specified area

Mass flow/unit area measured in: T.L.cm⁻².s⁻¹; mbar.L/cm².s; Pa.m³/m².s; (W.m⁻²)

> (Pressure x volume / area x time) Kurt J. Lesker

Main Components

Water vapor Oil/grease ('hydrocarbons') Solvents VOMs H₂ and CO 'Other stuff'

Main Components

Worst Sources

and

Porous surfaces (ceramics or metals) Plastics, elastomers, polymers Previously backstreamed oil Epoxy glues Lubricating/sealing/heat transfer greases

Us! (hair, skin cells, dust mites, spit, fingerprints, food)

Outgassing vs Time

1cm² Viton (fresh/baked) + 2000cm² SS (sanded)

Outgassing vs Time

Gas Load vs Time C:\PEC\VacTran 3\Models\Training\2010_Training\Outgas_2000cm_AnodizedAl_2000cm_sand_SS.VTSYS

2000 cm² anodized AI & 2000cm2 sanded SS

Reducing Outgassing – 1st Steps

1. Make a *log book* and document everything!

- 2. Don't put weird stuff in the chamber
- 3. Solvent clean everything (no plastic squash bottles) *
- 4. Vacuum bake before assembly (if possible)
- 5. Wrap it (in what?) until ready to mount
- 6. Never touch anything with bare hands!

Vapor degrease

Reducing Outgassing – 2nd Steps

Vacuum History Heat Light Plasma (Chemistry)

Reducing Outgassing – Vacuum History

Following initial pump-down, subsequent pump-down times depends on:

- Time at atmosphere when vented
- Venting gas & dryness of vent gas *
- Dry gas flowing while chamber vented *
- Application or process in chamber *

LN2 offgas Partial close openings Live with it

Reducing Outgassing – Heat

Reducing Outgassing – Heat

	Unbaked (W/m²)	Baked (W/m ²)	Time/Temperature
Stainless	6 x 10 ⁻⁷	4 x 10 ⁻⁹	30hr / 250°C
		3 x 10 ⁻¹⁰	2hr / 900°C
		2 x 10 ⁻¹¹	3hr / 1000°C +
Aluminum	6 x 10 ⁻⁷	5 x 10 ⁻¹⁰	15hr / 250°C
		1 x 10 ⁻¹¹	GD & 200°C
Copper	5 x 10 ⁻⁶	2 x 10 ⁻⁹	20hr / 100°C
		Kurt J. Leske	ŗ

Reducing Outgassing – UV Light

Reducing Outgassing – Plasma / Glow Discharge

Outgassing Mechanisms Include: UV stimulated desorption Electron stimulated desorption Ion bombardment Hot atom energy transfer Free radical 'oxidation'

Pump ThroughputEquating Throughput & Gas LoadFlow Conversions & Calculations*

Gas Load — reminder

Total *mass* (quantity/amount) of gas *entering* the vacuum volume in a given *time* period

Mass flow measured in: T.L/s, Pa.m³/s, mbar.cc/s, atm.cc/s, sccm (pressure x volume / time)

Pump Throughput

Total *mass* (quantity/amount) of gas *leaving* the vacuum volume (via the pumps) in a given *time* period

Mass flow measured in: T.L/s, Pa.m³/s, mbar.cc/s, atm.cc/s, sccm (pressure x volume / time)

Equating Gas Load & Pump Throughput

Gas Load Pump Throughput Torr.Liter/sec Torr.Liter/sec

When Gas Load = Pump Throughput * (Gas In = Gas Out)

Chamber pressure is stable!

effective

Throughput Calculations — 1

Injecting 800 sccm, chamber pressure 2 mbar. What is the effective pumping speed needed in L/min?

- = 800/1000 sL/min
- = (800/1000) x 1013 mbar.L/min
- = 810 mbar.L/min
- = 810/2 L/min @ 2 mbar
- EPS = 405 L/min

Throughput Calculations — 2

Injecting 100 sccm, chamber pressure 3 x 10⁻³ Torr. What is the effective pumping speed needed in L/s?

- = 100/60 scc/s
- = (100/60) x (1/1000) sL/s
- = (100/60) x (1/1000) x 760 Torr.L/s
- = 1.27 Torr.L/s
- $= 1.27/(3 \times 10^{-3}) \text{ L/s}$ @ 3 x 10⁻³ Torr
- EPS = 422 L/s

Throughput Calculations — 3

Injecting 1 sLm, chamber pressure 0.5 mbar. What is the effective pumping speed needed in m³/h?

- $= 1 \times 60 \text{ sL/h}$
- $= (1 \times 60) \times (1/1000) \text{ sm}^3/\text{h}$
- = $(1 \times 60) \times (1/1000) \times 1013 \text{ mbar.m}^3/\text{h}$
- $= 60.8 \text{ mbar.m}^{3}/\text{h}$
- $= 60.8/(0.5) \text{ m}^3/\text{h}$ @ 0.5 mbar

EPS = $122 \text{ m}^{3}/\text{h}$

Pump Throughput 7

Throughput Calculations — 4

Injecting 300 sccm, have 500 L/s pump. What is base pressure in mbar?

- = 300/60 scc/s
- = (300/60) x (1/1000) sL/s
- = (300/60) x (1/1000) x 1013 mbar.L/s
- = 5.06 mbar.L/s

(assume EPS is 1/2 quoted pumping speed)

= 5.06/(250) mbar

Base Pressure = 0.02 mbar

Pump Throughput 8

Throughput Calculations — 5

- Injecting 200 sccm, 400 L/s turbo backed by 3.8 m³/h vane pump. Turbo's max foreline pressure 2 mbar. Will this work?
- $= 200 \times 60 \text{ scc/h}$
- = (200 x 60) x (1/1000) sL/h
- = $(200 \times 60) \times (1/1000) \times (1/1000) \text{ sm}^3/\text{h}$
- = $(200 \times 60) \times (1/1000) \times (1/1000) \times 1013 \text{ mbar.m}^3/\text{h}$
- $= 12.2 \text{ mbar.m}^{3}/\text{h}$
 - (assume EPS equals quoted pumping speed)
- = 12.2/(3.8) mbar = 3.2 mbar

It will not work!

Pump Throughput 9

Gas Load & Pump Throughput Conclusions

When Gas Load = Effective Pump Throughput *Chamber pressure is stable*

If you don't like that pressure your options are:

- 1. Reduce gas load
- 2. Increase pump throughput

Modeling with VacTran®

THE REAL AND LODGED AND THE MAX PROPERTY AND ADDRESS.